
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11302-021-09822-6

REVIEW ARTICLE

Mechanisms of ATP release in pain: role of pannexin and connexin 
channels

Manuel F. Muñoz1 · Theanne N. Griffith1 · Jorge E. Contreras1 

Received: 4 June 2021 / Accepted: 18 October 2021 
© The Author(s) 2021

Abstract
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an 
acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires 
treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have impli-
cated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in 
distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic 
signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question 
remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are 
established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including 
several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for 
pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release 
during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling 
evidence for an important role of connexins and pannexins in pain processing.
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Introduction

Pain is an essential physiological response, warning of cur-
rent or possible tissue damage, and is also modulated by psy-
chological, emotional, and societal components [1]. Within 
this definition lies an array of pain etiologies, which can 
be broadly classified as either acute or chronic. Acute pain, 
also referred to as nociceptive pain, is defined as a sensation 
evoked by noxious stimuli that activates pain-sensing periph-
eral sensory neurons. These peripheral nociceptors transmit 
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acute pain signals via myelinated A-delta- and unmyelinated 
C-afferents [2, 3]. Nociceptive pain can originate in most 
tissues, including musculoskeletal, visceral, and skin [4–6]. 
On the other hand, chronic pain is described as the mani-
festation of an injury, disorder, or disease that can last for 
months to years [3]. Two common forms of chronic pain 
include neuropathic and inflammatory pain. Neuropathic 
pain is defined as pain caused by a lesion or disease of the 
somatosensory nervous system [7]. A plethora of disorders, 
or their respective treatment plans, result in peripheral neu-
ropathic pain, including AIDS, diabetes, and cancer [8], and 
approximately ~ 53% of spinal cord injury patients develop 
some form of neuropathic pain [9]. In addition to peripheral 
neuropathy, central neuropathic pain can occur as a result 
of damage to the central nervous system (CNS), including 
stroke, encephalitis, and demyelinating disease like multiple 
sclerosis [10]. Inflammatory pain, such as that caused by dis-
eases like arthritis, involves tissue damage that results in the 
recruitment of immune cells and subsequent release of pro-
inflammatory substances, including cytokines and adenosine 
5′-triphosphate (ATP). Both neuropathic and inflammatory 
pain are associated with an elevated sensitivity to innocuous 
stimuli (such as warm water or changing clothes), as well 
as hypersensitivity to noxious stimuli, referred to as allo-
dynia and hyperalgesia, respectively [11]. There is abundant 
evidence that extracellular ATP and other nucleotides have 
an important role in pain signaling both in the periphery 
and in the CNS. Nevertheless, important questions remain, 
including the mechanisms through which ATP is released to 
activate nociceptive purinergic signaling pathways.

In 1972, ATP was proposed to be an extracellular sign-
aling molecule present in the peripheral nervous system 
(PNS) and the CNS [12]. Since then, 7 subtypes of iono-
tropic purinergic receptors have been identified (P2X1-7) 
[13]. Additionally, 8 subtypes of metabotropic receptors 
have also been characterized (P2Y1, P2Y2, P2Y4, P2Y6, 
P2Y11, P2Y12, P2Y13, and P2Y14) [13]. All P2X iso-
forms have been detected in the PNS [13], whereas only 
transcripts of P2Y1, P2Y2, P2Y4, and P2Y6 have been 
observed in sensory neurons of the dorsal root, trigeminal, 
and nodose ganglia [13–15]. Nearly half of spinal cord 
dorsal horn neurons use ATP as a fast excitatory neuro-
transmitter, where it activates P2X receptors present in 
laminae I–III of the spinal cord, the termination zone of 
presynaptic nociceptive afferents [16]. Much research has 
been devoted to establishing the subtype specific contri-
butions of purinergic receptors to different forms of pain 
signaling. In particular, activation of the homomeric P2X3 
and P2X2/3 receptors in sensory neurons have been asso-
ciated with acute pain behaviors [17–19]. For example, 
blocking P2X3 receptors with the selective P2X3 receptor 
antagonist A-317491 prevented acute muscle hyperalgesia, 
but had no effect on chronic-muscle pain [18]. Conversely, 

the activation and upregulation of P2X4 receptors on glial 
cells (i.e., microglia) are linked to the pathogenesis and 
development of neuropathic pain and mechanical allo-
dynia, thus representing a pathway promoting the devel-
opment of chronic pain [20–22]. Similarly, P2X7 recep-
tors have been primarily associated with neuropathic and 
chronic inflammatory pain, showing a selective upregula-
tion in human dorsal root ganglia, glial cells, and immune 
cells (i.e., monocytes and lymphocytes) [3, 23, 24].

Several reviews have recently addressed in detail the 
roles purinergic receptors play in both acute and chronic 
pain [25–27]. Conversely, less studied are the mechanisms 
of ATP release that initiate purinergic signaling during pain. 
Pannexins and connexin channels have been proposed to 
be critical for ATP release involved in the development of 
pain, representing possible therapeutical targets for analgesic 
drugs [28, 29]. Herein, we will describe the emerging role of 
these large-pore channels as conduits of ATP release during 
nociceptive signaling (Fig. 1).

ATP signaling in pain

ATP was first explicitly hypothesized to initiate nocicep-
tive signaling via activation of purinergic receptors on sen-
sory nerve terminals nearly 30 years ago [30]. Since then, 
a plethora of studies have used both pharmacological and 
genetic approaches to delineate the subtype-specific role 
of purinergic receptors in diverse pain etiologies. Vari-
ous P2Y metabotropic receptors are expressed in spinal 
cord astrocytes, microglia, and small nociceptive cells, 
as well as large-diameter mechanosensory neurons [31]. 
Increased expression of both P2Y6 and P2Y11 has been 
observed following spinal nerve ligation, and pharmaco-
logically blocking these receptors in the spinal cord was 
antiallodynic [32]. Novel antagonists of P2Y14 receptors 
were reported to ameliorate neuropathic pain in rats sub-
jected to sciatic nerve injury; however, additional stud-
ies are required to support this finding [33]. Upregulation 
of P2Y12 receptor mRNA and protein in activated spinal 
microglia has been observed in different rodent models 
of nerve injury and both pharmacological inhibition and 
genetic deletion of P2Y12 receptors reduced tactile allo-
dynia following nerve injury [34, 35]. Consistent with this, 
a P2Y12 agonist intrathecally administered to naive ani-
mals produced pain behaviors [34], suggesting that P2Y12 
signaling in spinal microglia contributes to neuropathic 
pain. P2Y12 has also been shown to be regulated in satel-
lite glia cells, which encase dorsal root ganglia (DRG) and 
trigeminal ganglia (TG) neuron soma, following chronic 
constriction injury (CCI) in rats to mediate both tactile and 
thermal hyperalgesia [36]. Finally, P2Y2 receptors are also 
expressed in satellite glia cells of the TG and inhibition of 
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these receptors reduced mechanical allodynia induced by 
Complete Freund’s adjuvant (CFA), suggesting the poten-
tial role of P2Y2 receptors in inflammatory pain [37].

In contrast to the largely non-neuronal role of P2Y 
receptors during pain signaling, an increasing number of 
studies have established the role of P2X receptors in the 
initiation of pain signaling in sensory neurons innervating 
organs such as skin, tongue, and bladder [38, 39]. P2X3 
receptors and P2X2/3 heteromeric receptors are the most 
prevalent isoforms in sensory neurons, though transcript 
and protein expression have been reported for all P2Xs, 
except P2X7 [40–43]. The P2X3 selective antagonist, 
A-31749, produced a dose-dependent reduction in visceral 
hypersensitivity in a model of chemically-induced colitis 
in rats [44], suggesting a contribution of P2X3 receptors 
to inflammatory pain mediated by vagal sensory afferents. 
Interestingly, P2X3 expression was elevated in women 
with endometriosis and endometriotic lesions, compared 
with control patients, and a positive correlation was 
reported between the severity of pain and the expression of 
P2X3 receptors in the endometrium [45]. As noted, P2X7 
is not expressed in sensory neurons, but instead is found in 
spinal cord neurons and motoneurons where it is activated 
by high concentrations of ATP following nerve injury 

[46, 47]. Use of the competitive P2X7 receptor antago-
nist, A-740003, resulted in blockage of IL-1β release from 
THP-1 cells, a monocyte-like cell line, and attenuation 
of tactile allodynia in a concentration-dependent man-
ner in two models of neuropathic pain [48]. In a CFA rat 
model of arthritis, co-administration of the selective P2X7 
receptor inhibitor, oxidized ATP (OxATP), significantly 
decreased chronic inflammatory pain compared to CFA 
administration alone [49]. Consistent with this notion, 
daily administration of the non-selective P2X7 antago-
nist pyridoxalphosphate-6-azophenyl-2[prime],4[prime]-
disulfonic acid (PPADS) led to a decrease in observable 
pain behaviors, reversed mechanical allodynia, reduced 
expression of proinflammatory cytokines, and decreased 
neuronal nitric oxide synthase (nNOS) and inducible nitric 
oxide synthase (iNOS) immunoreactivity in a CCI mouse 
model [50]. Furthermore, dexmedetomidine, selective 
α2-adrenoceptor agonist used for sedation, was proposed 
to attenuate neuropathic pain induced by CCI through 
inhibition of spinal P2X7 receptor expression [51]. P2X7 
receptors have been described to be intimately involved 
in microglial activation and cancer-induced allodynia, 
in which the use of siRNA of P2X7 reduced these pain-
related effects [52]. Collectively, these studies support a 

Fig. 1  A schematic diagram of the cell types and possible sources 
of ATP release during pain. ATP is released from a variety of cells, 
including epithelial cells (keratinocytes), immune cells (mast cells, 
macrophages), glial cells (microglial, astrocyte, and satellite glial 
cells), and neurons. Pannexin and connexin channels are shown in the 

cell types where they have been found to play a role in pain. Simi-
larly, P2X or P2Y receptors are displayed in sensory nerves, DRG, 
and spinal cord, where they can transmit acute and/or chronic pain 
signals
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role for P2X7 receptors in the spinal cord as early media-
tors of cellular damage during chronic inflammatory pain. 
Nevertheless, important contributions of other P2X iso-
forms have also been identified.

Indeed, P2X4 may have an exciting new role as a thera-
peutic target for neuropathic pain in humans with herpes 
zoster or Guillain-Barré syndrome (GBS). A novel P2X4 
antagonist, NP-1815-PX, exhibited anti-allodynic effects in 
a mouse model of herpetic pain and reduced mechanical 
allodynia after spinal nerve transection [53]. These analgesic 
effects may result from decreased mRNA levels of P2X4 
receptors in spinal microglial cells, which were observed 
after inoculation with the herpes virus [53]. Nevertheless, 
the specificity of this new compound for P2X4 receptors 
remains to be verified by other groups. In experimental 
autoimmune neuritis, an animal model of the GBS sub-
type demyelinating polyradiculoneuropathy, P2X4 recep-
tor expression increased in microglial cells present in the 
lumbar dorsal horn, but not in astrocytes [54]. Based on 
immunohistochemistry, the authors suggested that the accu-
mulation of P2X4 receptors in the lumbar dorsal horn may 
contribute to mechanical allodynia in this model [54]. Con-
sistently, similar results were obtained after GBS animals 
were treated with the antidepressant paroxetine, which is 
also a potent antagonist of P2X4, resulting in attenuated 
mechanical allodynia [55]. Blocking monoclonal antibod-
ies injected intrathecally at the L4-L6 spinal level in mice 
also induced analgesia in a mouse model of sciatic nerve 
ligation [56]. In line with this, global  P2X4−/− mice did not 
develop mechanical hypersensitivity after peripheral nerve 
injury, and also had impaired brain-derived neurotrophic fac-
tor (BDNF) release [57]. A different study, however, showed 
chronic inflammatory and neuropathic pain signaling were 
intact in  P2X4−/− mice, which suggests a pain-etiology spe-
cific role for this isoform [58]. Collectively, these results 
highlight the important role of P2X receptors in various pain 
signaling pathways and demonstrate that purinergic signal-
ing represents an exciting therapeutic target for pain treat-
ment. Conversely, the mechanisms mediating ATP release 
during pain remain poorly defined.

Sources of ATP release in pain

Several cell types are poised to release ATP to orchestrate 
the complex signaling pathways that underlie nociception 
(Fig. 1). Sensory neurons play a fundamental role in noci-
ception by transmitting pain signals from the periphery to 
the CNS. Primary afferents also release ATP onto lamina 
II spinal cord neurons to activate post-synaptic P2X recep-
tors and elicit fast excitatory postsynaptic currents (EPSCs), 
which can be blocked by antagonists, such as PPADS and 
suramin [59]. Work with mice harboring genetic deletion 

of the ATP vesicular transport protein, vesicular nucleotide 
transporter (VNUT), suggests a role for vesicle-mediated 
ATP release during different forms of pain. VNUT, whose 
gene name is SLC17A9, was originally cloned from mouse 
and human and was postulated to play a critical role in ATP 
transport in ATP-releasing cells [60]. It was shown that 
siRNA-mediated knockdown of SLC17A9 in PC12 cells, a 
pheochromocytoma cell line, diminished ATP exocytosis, 
suggesting its participation in ATP release from secretory 
vesicles [60]. VNUTs have been functionally linked to ATP 
exocytosis in a variety of physiological processes, includ-
ing lysosomal ATP accumulation, cell survival, neutrophil 
migration, astrocyte signaling, neuro-glial communication, 
and microglial-mediated neuropathic pain [61–69]. Inter-
estingly, the use of clodronate, a selective VNUT inhibitor, 
attenuated chronic inflammatory and neuropathic tactile 
pain in wildtype mice, but not in  VNUT−/− animals, with 
 VNUT−/− mice also showing reduced mechanical hyper-
algesia at baseline compared to controls [65]. Clodronate 
treatment decreased ATP release, and reduced expression 
of inflammatory markers, IL-6 release, and edema, support-
ing the role of VNUT mediating chronic neuropathic pain 
[65]. Consistent with this, spinal dorsal horn neurons from 
 VNUT−/− mice did not show increased ATP release follow-
ing nerve injury, which was observed in control animals, 
providing evidence that pain-induced exocytotic ATP release 
in the spinal cord is dependent on VNUT [63]. There was no 
difference, however, between  VNUT−/− mice and controls 
in acute nocifensive behaviors, suggesting this pathway is 
specifically activated during chronic pain conditions. Fur-
thermore, tactile allodynia was still present when VNUT 
was selectively deleted in astrocytes, microglia, and primary 
sensory neurons after peripheral nerve injury [63]. This sug-
gests that vesicular ATP release does not trigger pain signal-
ing in all cell types involved in pain, opening the possibility 
for non-vesicular ATP release mechanisms, such as those 
mediated by molecule permeable channels like connexin-43 
(Cx43) and pannexin-1 (Panx-1) hemichannels.

Epidermal keratinocytes have an intimate physical inter-
action with intraepidermal nociceptive nerve fibers and are 
thus poised to modulate pain signaling [70, 71]. These cells 
express several transient receptor potential (TRP) channels 
that respond to a variety of environmental signals, includ-
ing noxious stimuli [72–74]. Cultured human epidermal 
keratinocytes stimulated with capsaicin, the spicy compo-
nent of chili peppers, responded with increased  Ca2+ signal-
ing [75]. Topical application of capsaicin to the mouse hind 
paw induced ATP release from keratinocytes, along with the 
expression of the neuronal activation marker, c-fos, in lami-
nae I and II of the dorsal horn [76]. Keratinocytes are capa-
ble of non-vesicular ATP release via connexin hemichannels 
following air stimulation, a model of mechanical force, thus 
demonstrating the potential role for these cells to initiate 
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purinergic signaling in primary afferents. ATP release from 
keratinocytes has also been shown to induce  Ca2+ waves in 
dorsal root ganglion (DRG) neurons, leading to pain behav-
iors [77–80]. Importantly, it has been shown that mechanical 
stimulation of primary normal human epidermal keratino-
cytes (NHEKs) causes an increase in  Ca2+ signaling in DRG 
neurons, which was diminished in the presence of ATP-
degrading enzyme apyrase, as well as P2X receptor block-
ers suramin and PPADS, suggesting that ATP release from 
keratinocytes onto DRG neurons may represent an important 
pathway of nociceptive transduction during pain [78].

Mast cells are granulated hematopoietic cells that are part 
of the immune and neuroimmune systems and play a crucial 
role as first responders during several painful pathologies 
[81, 82]. When these cells are activated and consequently 
degranulated, they secrete several pro-inflammatory mol-
ecules locally at the site of the injury, such as ATP, TNF-α, 
and interleukins that can amplify nociceptor activation and 
pain signaling. This occurs via direct activation of sensory 
axons, as well as microglia and other mast cells [82–84]. 
Macrophages are another important cell class involved in 
pain signaling that release ATP, as well as cytokines and 
TNF-α. These pro-inflammatory signals are detected by 
nociceptors and contribute to peripheral neuropathic pain 
pathogenesis [85–88]. Indeed, administration of macrophage 
depleting agents suppresses thermal hyperalgesia and tactile 
allodynia induced by the partial SNL in male mice [89].

Finally, glial cells are one of the most important non-
neuronal cell types that release ATP and are involved in 
pain signaling pathways. Astrocytes are thought to be criti-
cal targets for the late maintenance phase of neuropathic 
pain after nerve injury or tissue damage [90], due to their 
activation by glutamate, ATP, calcitonin gene-related pep-
tide (CGRP), or substance P [91], which results in astrocytic 
release of pro-inflammatory cytokines [92]. Nerve injury 
produces astrogliosis and ATP release from astrocytes in the 
injured area, which subsequently leads to neuroinflammation 
[93–95]. Furthermore, optogenetic activation of spinal astro-
cytes evokes mechanical allodynia, thermal hyperalgesia, 
and pain hypersensitivity via the release of ATP [96]. As 
with astrocytes in the CNS, satellite glial cells (SGCs) sur-
round the soma of DRG neurons where they are proposed to 
help control the local cellular environment. SGCs are also 
important for neuronal health and serve a protective func-
tion, much like brain astrocytes. Bidirectional SGC-to nocic-
eptor signaling via ATP release may modulate afferent firing 
[97, 98], suggesting a role in nociception. Lastly, microglial 
cells are defined as macrophages of the CNS that undergo 
an activation process of proliferation [99]. In response to 
nerve injury in the PNS, infiltrating monocytes differentiate 
into microglia-like cells [97], upregulating P2X4 receptors 
[100]. Interestingly, pharmacological blockage of spinal 
P2X4 receptors reversed tactile allodynia induced by nerve 

injury, which increased P2X4 expression only in microglial 
cells, but not in neurons or astrocytic cells [20]. Addition-
ally, microglia have also been proposed to induce ATP 
release via connexin hemichannels and pannexin channels 
in the context of physiological neuron-astrocyte-microglial 
crosstalk [101]. This remains to be examined, however, in 
the context of pain.

Following ATP release, its availability is tightly regulated 
by ectonucleotidases, ectoenzymes that regulate extracellu-
lar ATP concentrations and, therefore, are closely involved 
in the temporal kinetics and amplitude of purinergic recep-
tor activation [102]. Ectonucleotidases breakdown ATP into 
adenosine-5′-diphosphate (ADP), adenosine monophosphate 
(AMP), and adenosine [103]. They include the nucleoside 
triphosphate diphosphohydrolase (NTPDase), nucleotide 
pyrophosphatase/phosphodiesterase (NPP), ecto-50-nu-
cleotidase/CD73, tissue-nonspecific alkaline phosphatase 
(TNAP), and prostatic acid phosphatase (PAP) families, as 
well as other phosphatases such as adenosine deaminase 
(ADA) and purine nucleoside phosphorylase (PNP) [102]. 
Recently, ectonucleotidases have also been linked to noci-
ceptive signaling. For example, it was reported that sciatic 
nerve transection produced decreased mRNA levels of the 
ectonucleotidase PAP in rat DRG, which is consistent with 
the antiallodynic effect of intrathecal injection of PAP pro-
tein in a spared nerve injury [104]. Similarly, a study using a 
mouse model of resiniferatoxin (RTX)-induced neuropathic 
pain showed that exogenous PAP treatment via intraperito-
neal injection attenuated mechanical allodynia in a dose-
dependent manner [105]. This is in line with several other 
studies demonstrating the anti-nociceptive effects of PAP 
and the ectonucleotidase CD73 in models of chronic inflam-
matory or neuropathic pain [106–108]. Thus, mounting evi-
dence suggests ectonucleotidase-mediated control of ATP 
availability could play an important role in both acute and 
chronic purinergic nociceptive signaling.

Biology of connexins and pannexins and its 
role in ATP release

In humans, there are 21 different connexin (Cxs) isoforms 
that are found throughout the body. These proteins form 
hemichannels or gap junction channels that mediate inter-
cellular molecular communication in a diverse array of pro-
cesses. These include various aspects of development and 
physiology, as well as responses to injury and inflamma-
tion [109]. In a cell, six connexin proteins oligomerize to 
form a hemichannel that is sorted to the plasma membrane. 
The docking of two hemichannels at the plasma membrane 
from adjacent cells leads to the formation of gap junction 
channels (GJCs). GJCs constitute intercellular channels 
that allow the cytoplasmic passage of second messengers 
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such as  Ca2+ and inositol 1,4,5-trisphosphate  (IP3) between 
neighboring cells [110–112]. Undocked hemichannels can 
also open at the plasma membrane and play paracrine or 
autocrine roles by mediating communication between the 
extracellular and intracellular space via the release of trans-
mitter molecules such as  NAD+, glutamate, prostaglandins, 
and ATP [113–116].

An interesting demonstration for ATP permeability 
via Cx43-formed hemichannels combined single-channel 
recordings along with the luciferace/luciferine biolumi-
nescence assay of ATP release [117]. The authors showed 
that ATP release occurs in parallel with hemichannel open-
ing in the C6 rat glioma cell line. ATP release was not 
observed when hemichannels were closed or in the pres-
ence of hemichannel blockers such as carbenoxolone (CBX) 
and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) 
[117]. ATP release via connexin hemichannels has been 
proposed to have both physiological and pathological roles. 
It has been shown that after a cerebral ischemia and reper-
fusion model of oxygen and glucose deprivation, primary 
astrocyte cultures have increased extracellular ATP levels 
and ethidium uptake, which was prevented in the presence 
of Cx43 blocking peptides, Gap19 and Gap26, suggesting 
that Cx43 hemichannel mediates the release of ATP after 
brain ischemia [118]. Interestingly, photostimulation of 
Hensen’s inner ear cell cultures with caged-IP3 induces the 
release of ATP, an effect that was not observed in  Cx26−/− or 
 Cx30−/− cell cultures, providing evidence that ATP is also 
released from connexin-hemichannels in sensory hair cell 
regions [119]. Consistent with this notion, Cx26 and Cx30 
missense mutations that cause hearing-impairments, deaf-
ness, and skin disorders significantly alter hemichannel-
mediated ATP release [120–122]. Interestingly, Cx43, Cx30, 
and Cx26 are expressed in astrocytes, with Cx43 being the 
most predominant subtype [123, 124]. Cultured microglia 
cells displayed increased expression levels of Cx29, Cx32, 
Cx36, and Cx46 in proinflammatory conditions induced by 
lipopolysaccharides (LPS), TNF-α, or brain injury [125]. 
Mast cells have been shown to express Cx43 protein, while 
macrophages were found to express both Cx43 and Cx37 
[126]. Activated SGCs surrounding trigeminal ganglia neu-
rons also have high levels of Cx43 expression after lower 
first molar pulp inflammation, which was inhibited by the 
blocking peptide of Cx43, Gap26 [127]. RNA sequencing 
analysis showed that Cx43, Cx32, Cx30, Cx26, Cx45, and 
Cx36 are predominantly expressed in the trigeminal ganglia 
and DRG of adult mice [128, 129]. Thus, there is a growing 
body of evidence indicating that cells involved in pain sign-
aling and modulation express various types of connexin pro-
teins, which can potentially serve as an important purinergic 
pathway for nociceptive signaling.

In 2000, Sergey Lukyanov’s group discovered pannexin 
proteins, which were highly similar to invertebrate innexins 

[130]. In the human genome, 3 genes encode for pannexins: 
Panx-1, Panx-2, and Panx-3 [131]. Pannexins are consid-
ered integral membrane proteins, with cytoplasmic amino- 
and carboxy-terminals, four transmembrane segments, and 
two extracellular loops. This topology is grossly similar to 
that observed for connexin proteins [132]; however, pan-
nexin channels do not form GJCs, likely due to extracel-
lular glycosylation. They do form plasma membrane chan-
nels that allow for the passage of substances up to 1 kDa in 
size [133–135]. Recent high-resolution structures show that 
the Panx-1 channel is formed by oligomerization of seven 
Panx-1 proteins [136–138]. Pannexins were extensively 
detected in the brain, gastrointestinal tract, spinal cord, lung, 
kidney, thyroid, skeletal muscle, heart, and endocrine organs 
[133]. Panx-1 is expressed in a variety of cell types, includ-
ing lymphocytes, astrocytes, neurons, microglia, adipocytes, 
airway epithelia, and blood vessels [139–143]. Conversely, 
Panx-2 is preferentially expressed in the CNS and Panx-3 
is expressed in skeletal muscle and the epidermal layer of 
skin [144, 145]. The most well-studied pannexin is Panx-
1, which has been shown to play essential roles in several 
physiological processes such as maturation of excitatory 
synapses [146], bone differentiation [147], and skin devel-
opment [148]. Panx-1 channels are also linked to various 
pathophysiological roles including neuronal death [149], 
hemodynamic response to hypoxia [150], and neuroinflam-
mation [151]. While many reports have established that 
Panx-1 channels are permeable to ATP, it has been suggested 
that only certain open channel conformations will permit 
the permeation of large molecules [152]. Currently, avail-
able high-resolution structures of open Panx-1 channels are 
compatible with chloride permeability, but it is unlikely that 
their pore, with the dimensions reported, can permit pas-
sage of large molecules like ATP. Nevertheless, it is likely 
that Panx-1 channels adopt various open conformations, as 
they display multiple channel conductances that range from 
50 to 500 pS [152–155]. It is probable that only the larger 
unitary conductance (~ 500 pS) can permeate ATP and other 
metabolites, whereas smaller channel conductances are pri-
marily permeating chloride ions, as has been suggested [135, 
152]. However, Panx-1 channels in which the C-terminus is 
deleted by caspases displayed ATP permeability with chan-
nel conductances ranging from 50 to 100 pS [155]. This 
has been recently corroborated by studies using purified 
Panx-1 channels in proteoliposomes, which upon activation 
with caspase-3 became permeable to large molecules (up 
to 1 kDa) including ATP and glutamate [156]. Importantly, 
most of the cells described previously as pain mediators such 
keratinocytes, mast cells, macrophages, astrocytes, micro-
glia, and SGCs have been reported to release ATP via pan-
nexin-based channels [157–162]. Collectively, this evidence 
indicates that connexin and pannexin proteins may represent 
a putative therapeutical target to dampen ATP release from 
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cells, which could be important for attenuating the genera-
tion and development of different forms of pain.

Connexin 43 hemichannels and gap 
junctions in nerve injury‑induced pain

Among the different connexin subtypes, Cx43 is by far 
the most well studied in various pain models. It is ubiqui-
tously expressed, and therefore is found in many cellular 
types that are involved in pain signaling. This includes glial 
cells, such as astrocytes of the spinal cord dorsal horn [163], 
and SGCs in the trigeminal ganglion [164]. Several reports 
have suggested a particular role for ATP release from Cx43 
hemichannels in pain evoked by nerve injury. Mechanical 
allodynia and heat hyperalgesia were significantly reduced 
in knockout Cx30/Cx43 mice compared to controls during a 
two-month period in a weight drop spinal cord injury model. 
Astrogliosis was also reduced in these genetically modified 
mice after 1 week and 1-month post-injury when compared 
to wild-type controls. Interestingly, deletion of Cx30 alone 
does not prevent mechanical allodynia and hyperalgesia 
[163]. Using immunofluorescence analysis, a subsequent 
study found that following nerve injury Cx43 co-localized 
with the reactive astrocytic marker, glial fibrillary acidic pro-
tein (GFAP), but not with the neuronal marker NeuN, or the 
microglial/macrophage marker CX3C chemokine receptor 1 
(CX3CR1) [165]. Cx43 protein expression was increased in 
the spinal cord dorsal horn at 10 and 21 days following nerve 
injury and, interestingly, intrathecal injection of Cx43 block-
ing peptides, 43Gap26 or 37,43Gap27 significantly reduced 
mechanical allodynia in this model [165]. The authors also 
showed that Cx43 hemichannels promote the release of the 
proinflammatory chemokine CXCL1 in response to spinal 
injection of TNF-α. This consequently enhanced excita-
tory synaptic transmission in spinal cord neurons, thereby 
promoting mechanical allodynia for > 48 h. This is further 
evidence that Cx43-based hemichannels could represent an 
important pathway for pain signaling.

Adding further complexity to the participation of con-
nexin proteins in pain, pharmacological studies have sug-
gested not only the involvement of the connexin-based 
hemichannels in the development of pain, but also the role 
of intercellular gap junction channels. It was reported that 
intrathecal administration of CBX, also used as a non-
specific gap junction decoupler, reverted the generation of 
mechanical allodynia and thermal hyperalgesia in a sciatic 
inflammatory neuropathy model, as well as in the classic 
model of CCI in adult male rats [166]. Similarly, L4 DRG 
neurons treated with CFA or animals with CCI presented a 
higher number of coupled neurons (defined as two or more 
neuronal soma located within 1 mm of each other show-
ing synchronous  Ca2+ GCaMP-coded signals) compared 

with the vehicle using in vivo DRG  Ca2+ imaging [167]. 
Notably, Cx43 expression is increased after CFA and CCI 
only in SGCs of the DRG. Consistently, the specific deletion 
of Cx43 in SGCs showed an attenuation of  Ca2+ coupled 
cells and less mechanical hyperalgesia induced by CFA in 
comparison to control animals, suggesting a critical role of 
Cx43 SGCs in pain. Systemic administration of CBX also 
induced a significant decrease in coupled neurons and pain 
hypersensitivity, similarly with results performed in Cx43 
KO mice. This suggests that Cx43 in SGCs contributes to 
neuronal coupling via intercellular communication and are 
fundamental for the development of mechanical hyperalgesia 
and allodynia [167]. Interestingly, it has been reported that 
following injection of the dye Lucifer Yellow in mice with 
sciatic nerve neuritis, SGCs showed an increased number of 
coupled cells in relation to control conditions. Furthermore, 
based on electron microscopy data, SGCs from animals with 
nerve injury presented ultrastructural changes compared to 
wild-type animals, expressing an increased number of gap 
junction plaques and bridges between sheaths surrounding 
neurons, supporting the finding of an enhanced gap junction 
coupling signaling after nerve injury [168]. In other models 
of inflammatory pain, intraperitoneal administration of CBX 
reduced tactile hypersensitivity induced by injection of CFA 
in the submandibular skin of mice [169]. Increasing doses 
of CBX inhibited evident symptoms of neuropathic pain, 
such as mechanical and heat hypersensitivity. Furthermore, 
30–60 min after topical application of CBX to the spinal 
cord, the number of action potentials evoked during extra-
cellular recordings from dorsal horn neurons was reduced 
[170]. Although Cx43 gap junction channels do not directly 
leak ATP to the extracellular environments, they seem to be 
important modulators of chronic pain likely via the passage 
of the ions and signaling molecules [171, 172]. Indeed, inter-
cellular  Ca2+ waves that are spread via astrocytic Cx43 gap 
junction channels [173] can contribute to the release of ATP 
from astrocytes onto sensory neurons, which consequently 
may trigger the activation of purinergic receptors on nocice-
ptor terminals [163]. Overall, the findings suggest that Cx43-
mediated cell–cell coupling might have a significant effect 
on the hyperexcitability of sensory neurons in chronic pain. 
Yet, CBX and genetic deletion of Cx43 also affect activity 
of Cx43 hemichannels; thus, a role for hemichannels cannot 
be ruled out in these models.

Connexin proteins have also been linked to chemother-
apy-induced neuropathic pain [174, 175]. In fact, animals 
treated with bortezomib, a chemotherapy drug that induces 
peripheral neuropathy, exhibit increased expression of Cx43 
in spinal astrocytes compared to those treated with vehi-
cle [175]. Co-treatment with CBX reduced alterations in 
mechanical sensitivity, which lead to the hypothesis that 
upregulation of Cx43 by treatment with bortezomib might 
pathologically enhance hemichannel and GJC activity [176]. 
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This finding is also replicated with oxaliplatin treatment, 
another chemotherapy drug that often produces peripheral 
neuropathy. Oxaliplatin treatment increased protein expres-
sion of GFAP and Cx43 in spinal cord astrocytes at day 
7 post-administration, whereas Cx32 and Cx36 protein 
expression were unmodified compared to vehicle-treated 
animals [175]. Application of CBX produced a decrease in 
mechanical hypersensitivity triggered by oxaliplatin [175]. 
Consistent with the pathological role described above for 
augmented cell-to-cell coupling in SGCs, in vitro studies 
showed that oxaliplatin induced an increased incidence of 
cell coupling in cultured SGCs compared with those in con-
trol conditions [177]. While it is clear that chemotherapy 
drugs affect Cx43 expression, the specific role that gap junc-
tions and hemichannels play in neuropathic pain induced by 
chemotherapy treatment needs to be explored further using 
more specific pharmacological and genetic approaches.

Critical role of Panx‑1‑based channels 
in neuropathic pain

Pannexin channels, particularly those formed by Panx-1 pro-
teins, have been implicated in neuropathic pain and several 
other pathophysiological conditions [161]. Low doses of CBX 
(10, 25, and 50 mg/kg), generally used as a Panx-1 channel 
blocker [178], were reported to efficiently reverse the hypersen-
sitivity induced by CFA [169], compared with saline-treated 
animals. Consistent with this, Panx-1 null mice did not develop 
tactile hypersensitivity in an orofacial pain model compared 
with wild-type animals. Spray and colleagues showed that sub-
mandibular injection of CFA induced an increase in mRNA 
levels of Panx-1, IL-1, caspase-1, and increased ATP release 
in the trigeminal ganglia. All of these effects were completely 
abolished in animals with a global knockout of Panx-1. This 
was replicated in mice with Panx-1 deletion only in GFAP-
positive glia cells, highlighting the importance of Panx-1 chan-
nels in the regulation of pain responses [179].

Interestingly, it has been reported that pain hypersensi-
tivity evoked by peripheral nerve injury depends on diur-
nal oscillations of glucocorticoid release from the adrenal 
glands [180]. In this study, the authors established that tem-
poral elevations in glucocorticoid levels increase the release 
of ATP in the spinal cord, which could have a direct effect 
on the activation of P2Y12 purinergic receptors present on 
the cell membrane of microglial cells. Four-hour treatment 
with corticosterone induced an increase in ATP release from 
primary cultures of astrocytes compared to vehicle-treated 
astrocytes, which was reduced by pannexin channel inhibi-
tors, but not connexin channel inhibitors [180]. For instance, 
astrocytes incubated with 100 µM 10Panx-1 or astrocytes 
transfected with a siRNA against pannexin-1 has significantly 
decreased ATP release induced by corticosterone. Therefore, 

the authors suggest that corticosterone-induced ATP release 
occurs through a mechanism that depends on Panx-1 chan-
nel opening, leading to the activation of P2Y12 receptors on 
microglia to generate mechanical allodynia [180].

In other models of neuropathic pain, such as L5/L6 SNL, 
similar results have been obtained. For example, nerve injury 
produces an increase in Panx-1 expression in DRG at 5, 10, 
and 21 days after the SNL surgery. Similarly, intrathecal injec-
tion of CBX and 10Panx-1 reduced pain hypersensitivity, in 
line with results using siRNA knockdown of Panx-1, in which 
tactile and pressure withdrawal thresholds were decreased in 
SNL-treated rats 3 weeks post-surgery [181]. Similar results 
have shown that intrathecal administration of the Panx-1 
blockers 10Panx-1, carbenoxolone, and probenecid depressed 
the spinal C-reflex wind-up activity and mechanical hyper-
algesia in neuropathic rats 10 days after nerve injury [182]. 
Again, this supports the notion that Panx-1 channels are medi-
ators of ATP release in neuropathic pain syndromes. In other 
pathologies, such as cortical spreading depression (CSD), 
which is purported to be the cause of migraine aura and head-
aches, inhibition of Panx-1 channels with CBX suppressed 
trigeminal pain fiber activation, degranulation of mast cells, 
and pain as measured using a mouse grimace scale [183]. 
Additionally, Panx-1 channels have been suggested to be tar-
gets of opiates. The withdrawal behavior evoked by morphine 
normally induces long-term facilitation in neurons located at 
lamina I and II of the spinal dorsal horn, generating analge-
sia. However, genetic deletion of Panx-1 in microglia abol-
ished the spinal facilitation and ameliorated the withdrawal 
response. The investigators suggested that during withdrawal, 
Panx-1 channels are activated, which induces ATP release 
from microglial cells [160]. Taken together, this large body 
of evidence indicates that Panx-1 channels represent a critical 
pathway to induce the release of ATP from different inflam-
matory cells that contribute to the pain signaling.

Future directions

During pain, a plethora of cells, epithelial cells, glia, and 
immune cells mediate the release of ATP to activate puriner-
gic receptors on sensory terminals and the subsequent trans-
mission of nociceptive signals to the spinal cord and brain. 
Evidence suggests that during different pain states, connexin 
and pannexin channels might serve as critical conduits for 
ATP release, as well as other pro-inflammatory molecules. 
Nevertheless, the role for these channels in most pain animal 
models is mainly supported by pharmacological approaches. 
These include selective and non-selective blockers such as 
the mimetic blocking peptide 10Panx-1, probenecid, and, 
in numerous cases, CBX. While the selectivity of mimetic 
blocking peptides is to some extent reliable, non-selective 
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blockers such as CBX in the absence of other indistinct treat-
ments make results more complex to interpret. For instance, 
there are other ATP-permeable channels such as the cal-
cium homeostasis modulators (CALHMs) or volume-regu-
lated anion channels (named SWELL1 or LRRC8A), which 
share pharmacological properties with pannexin and con-
nexin channels. Importantly, a putative role for these chan-
nels in pain also remains unexplored. Thus, future studies 
are needed using more specific pharmacological tools and 
cell type–specific knockout rodent models for connexin and 
pannexin genes. These studies will help us to unequivocally 
determine the potential therapeutical role of pannexins and 
connexin proteins for treating pain, which is a broad and 
complicated condition among patients around the world, 
representing a difficult yet important public health challenge.
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